""" Maintainer: David Halter Version: 0.1 py_fuzzyparser parses python code, with the goal of a good representation of the code within a tree structure. Variables, Classes and Functions are defined within this tree structure, containing their exact locations in the code. It is also a primary goal to work with code which contains syntax errors. This behaviour may be used to refactor, modify, search and complete code. To understand this code it is extremely important to understand the behaviour of the python module 'tokenize'. This original codebase of this parser, which has been refactored and heavily changed, was programmed by Aaron Griffin . **The structure of the following script:** A Scope has - imports (Import) - subscopes (Scope, Class, Function, Flow) - statements (Statement) All these objects have `Name`s. `Call` and `Array` are used as detail objects of a statement. All those classes are being generated by PyFuzzyParser, which takes python text as input and ignores just all the non-python stuff. Basically you could feed it a perl script, and it should still work (which means throw no error. """ from _compatibility import (next, literal_eval, StringIO, property, cleandoc, Python3Method) import tokenize import re import keyword import os import debug class ParserError(Exception): pass def indent_block(text, indention=' '): """ This function indents a text block with a default of four spaces """ temp = '' while text and text[-1] == '\n': temp += text[-1] text = text[:-1] lines = text.split('\n') return '\n'.join(map(lambda s: indention + s, lines)) + temp class PushBackIterator(object): def __init__(self, iterator): self.pushes = [] self.iterator = iterator def push_back(self, value): self.pushes.append(value) def __iter__(self): return self def next(self): """ Python 2 Compatibility """ return self.__next__() def __next__(self): if self.pushes: return self.pushes.pop() else: return next(self.iterator) class Base(object): """ This is just here to have an isinstance check, which is also used on evaluate classes. But since they have sometimes a special type of delegation, it is important for those classes to override this method. I know that there is a chance to do such things with __instancecheck__, but since Python 2.5 doesn't support it, I decided to do it this way. """ def isinstance(self, *cls): return isinstance(self, cls) class Simple(Base): """ The super class for Scope, Import, Name and Statement. Every object in the parser tree inherits from this class. """ def __init__(self, start_pos, end_pos=(None, None)): self.start_pos = start_pos self.end_pos = end_pos self.parent = None @Python3Method def get_parent_until(self, classes=(), reverse=False, include_current=False): """ Takes always the parent, until one class (not a Class) """ if type(classes) not in (tuple, list): classes = (classes,) scope = self while scope.parent is not None: if classes and reverse != scope.isinstance(*classes): if include_current: return scope break scope = scope.parent return scope def __repr__(self): code = self.get_code().replace('\n', ' ') return "<%s: %s@%s>" % \ (type(self).__name__, code, self.start_pos[0]) class Scope(Simple): """ Super class for the parser tree, which represents the state of a python text file. A Scope manages and owns its subscopes, which are classes and functions, as well as variables and imports. It is used to access the structure of python files. :param start_pos: The position (line and column) of the scope. :type start_pos: tuple(int, int) :param docstr: The docstring for the current Scope. :type docstr: str """ def __init__(self, start_pos, docstr=''): super(Scope, self).__init__(start_pos) self.subscopes = [] self.imports = [] self.statements = [] self.docstr = docstr self.asserts = [] def add_scope(self, sub, decorators): sub.parent = self sub.decorators = decorators for d in decorators: # the parent is the same, because the decorator has not the scope # of the function d.parent = sub.parent self.subscopes.append(sub) return sub def add_statement(self, stmt): """ Used to add a Statement or a Scope. A statement would be a normal command (Statement) or a Scope (Flow). """ stmt.parent = self self.statements.append(stmt) return stmt def add_docstr(self, string): """ Clean up a docstring """ self.docstr = cleandoc(literal_eval(string)) def add_import(self, imp): self.imports.append(imp) imp.parent = self def get_imports(self): """ Gets also the imports within flow statements """ i = [] + self.imports for s in self.statements: if isinstance(s, Scope): i += s.get_imports() return i def get_code(self, first_indent=False, indention=' '): """ :return: Returns the code of the current scope. :rtype: str """ string = "" if len(self.docstr) > 0: string += '"""' + self.docstr + '"""\n' for i in self.imports: string += i.get_code() for sub in self.subscopes: string += sub.get_code(first_indent=True, indention=indention) for stmt in self.statements: string += stmt.get_code() if first_indent: string = indent_block(string, indention=indention) return string @Python3Method def get_set_vars(self): """ Get all the names, that are active and accessible in the current scope. :return: list of Name :rtype: list """ n = [] for stmt in self.statements: try: n += stmt.get_set_vars(True) except TypeError: n += stmt.get_set_vars() # function and class names n += [s.name for s in self.subscopes] for i in self.imports: if not i.star: n += i.get_defined_names() return n def get_defined_names(self): return [n for n in self.get_set_vars() if isinstance(n, Import) or len(n) == 1] def is_empty(self): """ :return: True if there are no subscopes, imports and statements. :rtype: bool """ return not (self.imports or self.subscopes or self.statements) @Python3Method def get_statement_for_position(self, pos): checks = self.statements + self.asserts if self.isinstance(Function): checks += self.params + self.decorators + self.returns for s in checks: if isinstance(s, Flow): p = s.get_statement_for_position(pos) while s.next and not p: s = s.next p = s.get_statement_for_position(pos) if p: return p elif s.start_pos <= pos < s.end_pos: return s for s in self.subscopes: if s.start_pos <= pos <= s.end_pos: p = s.get_statement_for_position(pos) if p: return p def __repr__(self): try: name = self.path except AttributeError: try: name = self.name except AttributeError: name = self.command return "<%s: %s@%s-%s>" % (type(self).__name__, name, self.start_pos[0], self.end_pos[0]) class Module(Scope): """ The top scope, which is always a module. """ def __init__(self, path, docstr=''): super(Module, self).__init__((1, 0), docstr) self.path = path self.global_vars = [] self._name = None self.used_names = {} self.temp_used_names = [] def add_global(self, name): """ Global means in these context a function (subscope) which has a global statement. This is only relevant for the top scope. :param name: The name of the global. :type name: Name """ self.global_vars.append(name) # set no parent here, because globals are not defined in this scope. def get_set_vars(self): n = super(Module, self).get_set_vars() n += self.global_vars return n @property def name(self): """ This is used for the goto function. """ if self._name is not None: return self._name if self.path is None: string = '' # no path -> empty name else: sep = (re.escape(os.path.sep),) * 2 r = re.search(r'([^%s]*?)(%s__init__)?(\.py|\.so)?$' % sep, self.path) string = r.group(1) names = [(string, (0, 0))] self._name = Name(names, self.start_pos, self.end_pos, self) return self._name def is_builtin(self): return not (self.path is None or self.path.endswith('.py')) class Class(Scope): """ Used to store the parsed contents of a python class. :param name: The Class name. :type name: string :param supers: The super classes of a Class. :type supers: list :param start_pos: The start position (line, column) of the class. :type start_pos: tuple(int, int) :param docstr: The docstring for the current Scope. :type docstr: str """ def __init__(self, name, supers, start_pos, docstr=''): super(Class, self).__init__(start_pos, docstr) self.name = name name.parent = self self.supers = supers for s in self.supers: s.parent = self self.decorators = [] def get_code(self, first_indent=False, indention=' '): string = "\n".join('@' + stmt.get_code() for stmt in self.decorators) string += 'class %s' % (self.name) if len(self.supers) > 0: sup = ','.join(stmt.code for stmt in self.supers) string += '(%s)' % sup string += ':\n' string += super(Class, self).get_code(True, indention) if self.is_empty(): string += "pass\n" return string class Function(Scope): """ Used to store the parsed contents of a python function. :param name: The Function name. :type name: string :param params: The parameters (Statement) of a Function. :type params: list :param start_pos: The start position (line, column) the Function. :type start_pos: tuple(int, int) :param docstr: The docstring for the current Scope. :type docstr: str """ def __init__(self, name, params, start_pos, annotation): Scope.__init__(self, start_pos) self.name = name name.parent = self self.params = params for p in params: p.parent = self p.parent_function = self self.decorators = [] self.returns = [] self.is_generator = False self.listeners = set() # not used here, but in evaluation. if annotation is not None: annotation.parent = self self.annotation = annotation def get_code(self, first_indent=False, indention=' '): string = "\n".join('@' + stmt.get_code() for stmt in self.decorators) params = ','.join([stmt.code for stmt in self.params]) string += "def %s(%s):\n" % (self.name, params) string += super(Function, self).get_code(True, indention) if self.is_empty(): string += "pass\n" return string def get_set_vars(self): n = super(Function, self).get_set_vars() for p in self.params: try: n.append(p.get_name()) except IndexError: debug.warning("multiple names in param %s" % n) return n def get_call_signature(self, width=72): """ Generate call signature of this function. :param width: Fold lines if a line is longer than this value. :type width: int :rtype: str """ l = self.name.names[-1] + '(' lines = [] for (i, p) in enumerate(self.params): code = p.get_code(False) if i != len(self.params) - 1: code += ', ' if len(l + code) > width: lines.append(l[:-1] if l[-1] == ' ' else l) l = code else: l += code if l: lines.append(l) lines[-1] += ')' return '\n'.join(lines) @property def doc(self): """ Return a document string including call signature. """ return '%s\n\n%s' % (self.get_call_signature(), self.docstr) class Flow(Scope): """ Used to describe programming structure - flow statements, which indent code, but are not classes or functions: - for - while - if - try - with Therefore statements like else, except and finally are also here, they are now saved in the root flow elements, but in the next variable. :param command: The flow command, if, while, else, etc. :type command: str :param inits: The initializations of a flow -> while 'statement'. :type inits: list(Statement) :param start_pos: Position (line, column) of the Flow statement. :type start_pos: tuple(int, int) :param set_vars: Local variables used in the for loop (only there). :type set_vars: list """ def __init__(self, command, inits, start_pos, set_vars=None): self.next = None self.command = command super(Flow, self).__init__(start_pos, '') self._parent = None # These have to be statements, because of with, which takes multiple. self.inits = inits for s in inits: s.parent = self if set_vars is None: self.set_vars = [] else: self.set_vars = set_vars for s in self.set_vars: s.parent.parent = self s.parent = self @property def parent(self): return self._parent @parent.setter def parent(self, value): self._parent = value if self.next: self.next.parent = value def get_code(self, first_indent=False, indention=' '): stmts = [] for s in self.inits: stmts.append(s.get_code(new_line=False)) stmt = ', '.join(stmts) string = "%s %s:\n" % (self.command, vars, stmt) string += super(Flow, self).get_code(True, indention) if self.next: string += self.next.get_code() return string def get_set_vars(self, is_internal_call=False): """ Get the names for the flow. This includes also a call to the super class. :param is_internal_call: defines an option for internal files to crawl\ through this class. Normally it will just call its superiors, to\ generate the output. """ if is_internal_call: n = list(self.set_vars) for s in self.inits: n += s.set_vars if self.next: n += self.next.get_set_vars(is_internal_call) n += super(Flow, self).get_set_vars() return n else: return self.get_parent_until((Class, Function)).get_set_vars() def get_imports(self): i = super(Flow, self).get_imports() if self.next: i += self.next.get_imports() return i def set_next(self, next): """ Set the next element in the flow, those are else, except, etc. """ if self.next: return self.next.set_next(next) else: self.next = next self.next.parent = self.parent return next class ForFlow(Flow): """ Used for the for loop, because there are two statement parts. """ def __init__(self, inits, start_pos, set_stmt, is_list_comp=False): super(ForFlow, self).__init__('for', inits, start_pos, set_stmt.used_vars) self.set_stmt = set_stmt self.is_list_comp = is_list_comp def get_code(self, first_indent=False, indention=" " * 4): vars = ",".join(x.get_code() for x in self.set_vars) stmts = [] for s in self.inits: stmts.append(s.get_code(new_line=False)) stmt = ', '.join(stmts) s = "for %s in %s:\n" % (vars, stmt) return s + super(Flow, self).get_code(True, indention) class Import(Simple): """ Stores the imports of any Scopes. >>> 1+1 2 :param start_pos: Position (line, column) of the Import. :type start_pos: tuple(int, int) :param namespace: The import, can be empty if a star is given :type namespace: Name :param alias: The alias of a namespace(valid in the current namespace). :type alias: Name :param from_ns: Like the namespace, can be equally used. :type from_ns: Name :param star: If a star is used -> from time import *. :type star: bool :param defunct: An Import is valid or not. :type defunct: bool """ def __init__(self, start_pos, end_pos, namespace, alias=None, from_ns=None, star=False, relative_count=0, defunct=False): super(Import, self).__init__(start_pos, end_pos) self.namespace = namespace self.alias = alias self.from_ns = from_ns for n in [namespace, alias, from_ns]: if n: n.parent = self self.star = star self.relative_count = relative_count self.defunct = defunct def get_code(self, new_line=True): # in case one of the names is None alias = self.alias or '' namespace = self.namespace or '' from_ns = self.from_ns or '' if self.alias: ns_str = "%s as %s" % (namespace, alias) else: ns_str = str(namespace) nl = '\n' if new_line else '' if self.from_ns or self.relative_count: if self.star: ns_str = '*' dots = '.' * self.relative_count return "from %s%s import %s%s" % (dots, from_ns, ns_str, nl) else: return "import %s%s" % (ns_str, nl) def get_defined_names(self): if self.defunct: return [] if self.star: return [self] if self.alias: return [self.alias] if len(self.namespace) > 1: o = self.namespace n = Name([(o.names[0], o.start_pos)], o.start_pos, o.end_pos, parent=o.parent) return [n] else: return [self.namespace] def get_set_vars(self): return self.get_defined_names() def get_all_import_names(self): n = [] if self.from_ns: n.append(self.from_ns) if self.namespace: n.append(self.namespace) if self.alias: n.append(self.alias) return n class Statement(Simple): """ This is the class for all the possible statements. Which means, this class stores pretty much all the Python code, except functions, classes, imports, and flow functions like if, for, etc. :param code: The full code of a statement. This is import, if one wants \ to execute the code at some level. :param code: str :param set_vars: The variables which are defined by the statement. :param set_vars: str :param used_funcs: The functions which are used by the statement. :param used_funcs: str :param used_vars: The variables which are used by the statement. :param used_vars: str :param token_list: Token list which is also peppered with Name. :param token_list: list :param start_pos: Position (line, column) of the Statement. :type start_pos: tuple(int, int) """ def __init__(self, code, set_vars, used_funcs, used_vars, token_list, start_pos, end_pos): super(Statement, self).__init__(start_pos, end_pos) self.code = code self.used_funcs = used_funcs self.used_vars = used_vars self.token_list = token_list for s in set_vars + used_funcs + used_vars: s.parent = self self.set_vars = self._remove_executions_from_set_vars(set_vars) # cache self._assignment_calls = None self._assignment_details = None # this is important for other scripts self._assignment_calls_calculated = False def _remove_executions_from_set_vars(self, set_vars): """ Important mainly for assosiative arrays: >>> a = 3 >>> b = {} >>> b[a] = 3 `a` is in this case not a set_var, it is used to index the dict. """ if not set_vars: return set_vars result = set(set_vars) last = None in_execution = 0 for tok in self.token_list: if isinstance(tok, Name): if tok not in result: break if in_execution: result.remove(tok) elif isinstance(tok, tuple): tok = tok[1] if tok in ['(', '['] and isinstance(last, Name): in_execution += 1 elif tok in [')', ']'] and in_execution > 0: in_execution -= 1 last = tok return list(result) def get_code(self, new_line=True): if new_line: return self.code + '\n' else: return self.code def get_set_vars(self): """ Get the names for the statement. """ return list(self.set_vars) @property def assignment_details(self): if self._assignment_details is None: # normally, this calls sets this variable self.get_assignment_calls() # it may not have been set by get_assignment_calls -> just use an empty # array return self._assignment_details or [] def is_global(self): # first keyword of the first token is global -> must be a global return str(self.token_list[0]) == "global" def get_assignment_calls(self): """ This is not done in the main parser, because it might be slow and most of the statements won't need this data anyway. This is something 'like' a lazy execution. This is not really nice written, sorry for that. If you plan to replace it and make it nicer, that would be cool :-) """ if self._assignment_calls_calculated: return self._assignment_calls self._assignment_details = [] top = result = Array(self.start_pos, Array.NOARRAY, self) level = 0 is_chain = False close_brackets = False tok_iter = enumerate(self.token_list) for i, tok_temp in tok_iter: #print 'tok', tok_temp, result if isinstance(tok_temp, ListComprehension): result.add_to_current_field(tok_temp) continue try: token_type, tok, start_pos = tok_temp except TypeError: # the token is a Name, which has already been parsed tok = tok_temp token_type = None start_pos = tok.start_pos except ValueError: debug.warning("unkown value, shouldn't happen", tok_temp, type(tok_temp)) raise else: if tok in ['return', 'yield'] or level == 0 and \ tok.endswith('=') and not tok in ['>=', '<=', '==', '!=']: # This means, there is an assignment here. # Add assignments, which can be more than one self._assignment_details.append((tok, top)) # All these calls wouldn't be important if nonlocal would # exist. -> Initialize the first item again. result = Array(start_pos, Array.NOARRAY, self) top = result level = 0 close_brackets = False is_chain = False continue elif tok == 'as': next(tok_iter, None) continue brackets = {'(': Array.TUPLE, '[': Array.LIST, '{': Array.SET} is_call = lambda: type(result) == Call is_call_or_close = lambda: is_call() or close_brackets is_literal = token_type in [tokenize.STRING, tokenize.NUMBER] if isinstance(tok, Name) or is_literal: c_type = Call.NAME if is_literal: tok = literal_eval(tok) if token_type == tokenize.STRING: c_type = Call.STRING elif token_type == tokenize.NUMBER: c_type = Call.NUMBER if is_chain: call = Call(tok, c_type, start_pos, parent=result) result = result.set_next_chain_call(call) is_chain = False close_brackets = False else: if close_brackets: result = result.parent close_brackets = False if type(result) == Call: result = result.parent call = Call(tok, c_type, start_pos, parent=result) result.add_to_current_field(call) result = call elif tok in brackets.keys(): # brackets level += 1 if is_call_or_close(): result = Array(start_pos, brackets[tok], parent=result) result = result.parent.add_execution(result) close_brackets = False else: result = Array(start_pos, brackets[tok], parent=result) result.parent.add_to_current_field(result) elif tok == ':': while is_call_or_close(): result = result.parent close_brackets = False if result.type == Array.LIST: # [:] lookups result.add_to_current_field(tok) else: result.add_dictionary_key() elif tok == '.': if close_brackets and result.parent != top: # only get out of the array, if it is a array execution result = result.parent close_brackets = False is_chain = True elif tok == ',': while is_call_or_close(): result = result.parent close_brackets = False result.add_field((start_pos[0], start_pos[1] + 1)) # important - it cannot be empty anymore if result.type == Array.NOARRAY: result.type = Array.TUPLE elif tok in [')', '}', ']']: while is_call_or_close(): result = result.parent close_brackets = False if tok == '}' and not len(result): # this is a really special case - empty brackets {} are # always dictionaries and not sets. result.type = Array.DICT level -= 1 result.end_pos = start_pos[0], start_pos[1] + 1 close_brackets = True else: while is_call_or_close(): result = result.parent close_brackets = False if tok != '\n': result.add_to_current_field(tok) if level != 0: debug.warning("Brackets don't match: %s." "This is not normal behaviour." % level) self._assignment_calls_calculated = True self._assignment_calls = top return top class Param(Statement): """ The class which shows definitions of params of classes and functions. But this is not to define function calls. """ def __init__(self, code, set_vars, used_funcs, used_vars, token_list, start_pos, end_pos): super(Param, self).__init__(code, set_vars, used_funcs, used_vars, token_list, start_pos, end_pos) # this is defined by the parser later on, not at the initialization # it is the position in the call (first argument, second...) self.position_nr = None self.is_generated = False self.annotation_stmt = None self.parent_function = None def add_annotation(self, annotation_stmt): annotation_stmt.parent = self self.annotation_stmt = annotation_stmt def get_name(self): """ get the name of the param """ n = self.set_vars or self.used_vars if len(n) > 1: debug.warning("Multiple param names (%s)." % n) return n[0] class Call(Base): """ `Call` contains a call, e.g. `foo.bar` and owns the executions of those calls, which are `Array`s. """ NAME = 1 NUMBER = 2 STRING = 3 def __init__(self, name, type, start_pos, parent_stmt=None, parent=None): self.name = name # parent is not the oposite of next. The parent of c: a = [b.c] would # be an array. self.parent = parent self.type = type self.start_pos = start_pos self.next = None self.execution = None self._parent_stmt = parent_stmt @property def parent_stmt(self): if self._parent_stmt is not None: return self._parent_stmt elif self.parent: return self.parent.parent_stmt else: return None @parent_stmt.setter def parent_stmt(self, value): self._parent_stmt = value def set_next_chain_call(self, call): """ Adds another part of the statement""" self.next = call call.parent = self.parent return call def add_execution(self, call): """ An execution is nothing else than brackets, with params in them, which shows access on the internals of this name. """ self.execution = call # there might be multiple executions, like a()[0], in that case, they # have the same parent. Otherwise it's not possible to parse proper. if self.parent.execution == self: call.parent = self.parent else: call.parent = self return call def generate_call_path(self): """ Helps to get the order in which statements are executed. """ # TODO include previous nodes? As an option? try: for name_part in self.name.names: yield name_part except AttributeError: yield self if self.execution is not None: for y in self.execution.generate_call_path(): yield y if self.next is not None: for y in self.next.generate_call_path(): yield y def get_code(self): if self.type == Call.NAME: s = self.name.get_code() else: s = repr(self.name) if self.execution is not None: s += '(%s)' % self.execution.get_code() if self.next is not None: s += self.next.get_code() return s def __repr__(self): return "<%s: %s>" % \ (type(self).__name__, self.name) class Array(Call): """ Describes the different python types for an array, but also empty statements. In the Python syntax definitions this type is named 'atom'. http://docs.python.org/py3k/reference/grammar.html Array saves sub-arrays as well as normal operators and calls to methods. :param array_type: The type of an array, which can be one of the constants\ below. :type array_type: int """ NOARRAY = None TUPLE = 'tuple' LIST = 'list' DICT = 'dict' SET = 'set' def __init__(self, start_pos, arr_type=NOARRAY, parent_stmt=None, parent=None, values=None): super(Array, self).__init__(None, arr_type, start_pos, parent_stmt, parent) self.values = values if values else [] self.arr_el_pos = [] self.keys = [] self.end_pos = None def add_field(self, start_pos): """ Just add a new field to the values. Each value has a sub-array, because there may be different tokens in one array. """ self.arr_el_pos.append(start_pos) self.values.append([]) def add_to_current_field(self, tok): """ Adds a token to the latest field (in content). """ if not self.values: # An empty round brace is just a tuple, filled it is unnecessary. if self.type == Array.TUPLE: self.type = Array.NOARRAY # Add the first field, this is done here, because if nothing # gets added, the list is empty, which is also needed sometimes. self.values.append([]) self.values[-1].append(tok) def add_dictionary_key(self): """ Only used for dictionaries, automatically adds the tokens added by now from the values to keys, because the parser works this way. """ if self.type in (Array.LIST, Array.TUPLE): return # these are basically code errors, just ignore self.keys.append(self.values.pop()) if self.type == Array.SET: self.type = Array.DICT self.values.append([]) def get_only_subelement(self): """ Returns the only element that an array contains. If it contains more than one element, raise an exception. """ if len(self.values) != 1 or len(self.values[0]) != 1: raise AttributeError("More than one value found") return self.values[0][0] @staticmethod def is_type(instance, *types): """ This is not only used for calls on the actual object, but for ducktyping, to invoke this function with anything as `self`. """ if isinstance(instance, Array): if instance.type in types: return True return False def __len__(self): return len(self.values) def __getitem__(self, key): return self.values[key] def __iter__(self): if self.type == self.DICT: return iter(zip(self.keys, self.values)) else: return iter(self.values) def get_code(self): def to_str(el): try: return el.get_code() except AttributeError: return str(el) map = {Array.NOARRAY: '%s', Array.TUPLE: '(%s)', Array.LIST: '[%s]', Array.DICT: '{%s}', Array.SET: '{%s}' } inner = [] for i, value in enumerate(self.values): s = '' try: key = self.keys[i] except IndexError: pass else: for el in key[i]: s += to_str(el) for el in value: s += to_str(el) inner.append(s) return map[self.type] % ', '.join(inner) def __repr__(self): if self.type == self.NOARRAY: typ = 'noarray' else: typ = self.type return "<%s: %s%s>" % (type(self).__name__, typ, self.values) class NamePart(str): """ A string. Sometimes it is important to know if the string belongs to a name or not. """ def __new__(cls, s, start_pos): self = super(NamePart, cls).__new__(cls, s) self.start_pos = start_pos return self @property def end_pos(self): return self.start_pos[0], self.start_pos[1] + len(self) class Name(Simple): """ Used to define names in python. Which means the whole namespace/class/function stuff. So a name like "module.class.function" would result in an array of [module, class, function] """ def __init__(self, names, start_pos, end_pos, parent=None): super(Name, self).__init__(start_pos, end_pos) self.names = tuple(n if isinstance(n, NamePart) else NamePart(*n) for n in names) if parent is not None: self.parent = parent def get_code(self): """ Returns the names in a full string format """ return ".".join(self.names) def __str__(self): return self.get_code() def __len__(self): return len(self.names) class ListComprehension(object): """ Helper class for list comprehensions """ def __init__(self, stmt, middle, input): self.stmt = stmt self.middle = middle self.input = input def __repr__(self): return "<%s: %s>" % \ (type(self).__name__, self.get_code()) def get_code(self): statements = self.stmt, self.middle, self.input code = [s.get_code().replace('\n', '') for s in statements] return "%s for %s in %s" % tuple(code) class PyFuzzyParser(object): """ This class is used to parse a Python file, it then divides them into a class structure of different scopes. :param code: The codebase for the parser. :type code: str :param user_position: The line/column, the user is currently on. :type user_position: tuple(int, int) """ def __init__(self, code, module_path=None, user_position=None, no_docstr=False, line_offset=0): self.user_position = user_position self.user_scope = None self.user_stmt = None self.code = code + '\n' # end with \n, because the parser needs it self.no_docstr = no_docstr # initialize global Scope self.module = Module(module_path) self.scope = self.module self.current = (None, None) # Stuff to fix tokenize errors. The parser is pretty good in tolerating # any errors of tokenize and just parse ahead. self._line_of_tokenize_restart = line_offset self.parse() # delete code again, only the parser needs it del self.code def __repr__(self): return "<%s: %s>" % (type(self).__name__, self.module) @property def start_pos(self): return (self._line_of_tokenize_restart + self._tokenize_start_pos[0], self._tokenize_start_pos[1]) @property def end_pos(self): return (self._line_of_tokenize_restart + self._tokenize_end_pos[0], self._tokenize_end_pos[1]) def _check_user_stmt(self, simple): if not isinstance(simple, Param): for tok_name in self.module.temp_used_names: try: self.module.used_names[tok_name].add(simple) except KeyError: self.module.used_names[tok_name] = set([simple]) self.module.temp_used_names = [] if not self.user_position: return # the position is right if simple.start_pos <= self.user_position <= simple.end_pos: if self.user_stmt is not None: # if there is already a user position (another import, because # imports are splitted) the names are checked. for n in simple.get_set_vars(): if n.start_pos < self.user_position <= n.end_pos: self.user_stmt = simple else: self.user_stmt = simple def _parsedotname(self, pre_used_token=None): """ The dot name parser parses a name, variable or function and returns their names. :return: Tuple of Name, token_type, nexttoken. :rtype: tuple(Name, int, str) """ def append(el): names.append(el) self.module.temp_used_names.append(el[0]) names = [] if pre_used_token is None: token_type, tok = self.next() if token_type != tokenize.NAME and tok != '*': return [], token_type, tok else: token_type, tok = pre_used_token if token_type != tokenize.NAME and tok != '*': # token maybe a name or star return None, token_type, tok append((tok, self.start_pos)) first_pos = self.start_pos while True: token_type, tok = self.next() if tok != '.': break token_type, tok = self.next() if token_type != tokenize.NAME: break append((tok, self.start_pos)) n = Name(names, first_pos, self.end_pos) if names else None return n, token_type, tok def _parseimportlist(self): """ The parser for the imports. Unlike the class and function parse function, this returns no Import class, but rather an import list, which is then added later on. The reason, why this is not done in the same class lies in the nature of imports. There are two ways to write them: - from ... import ... - import ... To distinguish, this has to be processed after the parser. :return: List of imports. :rtype: list """ imports = [] brackets = False continue_kw = [",", ";", "\n", ')'] \ + list(set(keyword.kwlist) - set(['as'])) while True: defunct = False token_type, tok = self.next() if token_type == tokenize.ENDMARKER: break if brackets and tok == '\n': self.next() if tok == '(': # python allows only one `(` in the statement. brackets = True self.next() i, token_type, tok = self._parsedotname(self.current) if not i: defunct = True name2 = None if tok == 'as': name2, token_type, tok = self._parsedotname() imports.append((i, name2, defunct)) while tok not in continue_kw: token_type, tok = self.next() if not (tok == "," or brackets and tok == '\n'): break return imports def _parseparen(self): """ Functions and Classes have params (which means for classes super-classes). They are parsed here and returned as Statements. :return: List of Statements :rtype: list """ names = [] tok = None pos = 0 breaks = [',', ':'] while tok not in [')', ':']: param, tok = self._parse_statement(added_breaks=breaks, stmt_class=Param) if param and tok == ':': # parse annotations annotation, tok = self._parse_statement(added_breaks=breaks) if annotation: param.add_annotation(annotation) # params without vars are usually syntax errors. if param and (param.set_vars or param.used_vars): param.position_nr = pos names.append(param) pos += 1 return names def _parsefunction(self): """ The parser for a text functions. Process the tokens, which follow a function definition. :return: Return a Scope representation of the tokens. :rtype: Function """ first_pos = self.start_pos token_type, fname = self.next() if token_type != tokenize.NAME: return None fname = Name([(fname, self.start_pos)], self.start_pos, self.end_pos) token_type, open = self.next() if open != '(': return None params = self._parseparen() token_type, colon = self.next() annotation = None if colon in ['-', '->']: # parse annotations if colon == '-': # The Python 2 tokenizer doesn't understand this token_type, colon = self.next() if colon != '>': return None annotation, colon = self._parse_statement(added_breaks=[':']) if colon != ':': return None # because of 2 line func param definitions scope = Function(fname, params, first_pos, annotation) if self.user_scope and scope != self.user_scope \ and self.user_position > first_pos: self.user_scope = scope return scope def _parseclass(self): """ The parser for a text class. Process the tokens, which follow a class definition. :return: Return a Scope representation of the tokens. :rtype: Class """ first_pos = self.start_pos token_type, cname = self.next() if token_type != tokenize.NAME: debug.warning("class: syntax err, token is not a name@%s (%s: %s)" % (self.start_pos[0], tokenize.tok_name[token_type], cname)) return None cname = Name([(cname, self.start_pos)], self.start_pos, self.end_pos) super = [] token_type, next = self.next() if next == '(': super = self._parseparen() token_type, next = self.next() if next != ':': debug.warning("class syntax: %s@%s" % (cname, self.start_pos[0])) return None # because of 2 line class initializations scope = Class(cname, super, first_pos) if self.user_scope and scope != self.user_scope \ and self.user_position > first_pos: self.user_scope = scope return scope def _parse_statement(self, pre_used_token=None, added_breaks=None, stmt_class=Statement, list_comp=False): """ Parses statements like: >>> a = test(b) >>> a += 3 - 2 or b and so on. One line at a time. :param pre_used_token: The pre parsed token. :type pre_used_token: set :return: Statement + last parsed token. :rtype: (Statement, str) """ string = '' set_vars = [] used_funcs = [] used_vars = [] level = 0 # The level of parentheses is_return = None if pre_used_token: token_type, tok = pre_used_token else: token_type, tok = self.next() while token_type == tokenize.COMMENT: # remove newline and comment self.next() token_type, tok = self.next() first_pos = self.start_pos opening_brackets = ['{', '(', '['] closing_brackets = ['}', ')', ']'] # the difference between "break" and "always break" is that the latter # will even break in parentheses. This is true for typical flow # commands like def and class and the imports, which will never be used # in a statement. breaks = ['\n', ':', ')'] always_break = [';', 'import', 'from', 'class', 'def', 'try', 'except', 'finally', 'while'] if added_breaks: breaks += added_breaks tok_list = [] while not (tok in always_break or tok in breaks and level <= 0): try: set_string = None #print 'parse_stmt', tok, tokenize.tok_name[token_type] tok_list.append(self.current + (self.start_pos,)) if tok == 'as': string += " %s " % tok token_type, tok = self.next() if token_type == tokenize.NAME: n, token_type, tok = self._parsedotname(self.current) if n: set_vars.append(n) tok_list.append(n) string += ".".join(n.names) continue elif token_type == tokenize.NAME: if tok in ['return', 'yield', 'del', 'raise']: if len(tok_list) > 1: # this happens, when a statement has opening # brackets, which are not closed again, here I just # start a new statement. This is a hack, but I # could not come up with a better solution. # This is basically a reset of the statement. debug.warning('keyword in statement %s@%s', tok_list, self.start_pos[0]) tok_list = [self.current + (self.start_pos,)] set_vars = [] used_funcs = [] used_vars = [] level = 0 set_string = tok + ' ' if tok in ['return', 'yield']: is_return = tok elif tok == 'for': # list comprehensions! middle, tok = self._parse_statement( added_breaks=['in']) if tok != 'in' or middle is None: if middle is None: level -= 1 else: middle.parent = self.scope debug.warning('list comprehension formatting @%s' % self.start_pos[0]) continue b = [')', ']'] in_clause, tok = self._parse_statement(added_breaks=b, list_comp=True) if tok not in b or in_clause is None: middle.parent = self.scope if in_clause is None: self.gen.push_back(self._current_full) else: in_clause.parent = self.scope in_clause.parent = self.scope debug.warning('list comprehension in_clause %s@%s' % (tok, self.start_pos[0])) continue other_level = 0 for i, tok in enumerate(reversed(tok_list)): if not isinstance(tok, (Name, ListComprehension)): tok = tok[1] if tok in closing_brackets: other_level -= 1 elif tok in opening_brackets: other_level += 1 if other_level > 0: break else: # could not detect brackets -> nested list comp i = 0 tok_list, toks = tok_list[:-i], tok_list[-i:-1] src = '' for t in toks: src += t[1] if isinstance(t, tuple) \ else t.get_code() st = Statement(src, [], [], [], toks, first_pos, self.end_pos) for s in [st, middle, in_clause]: s.parent = self.scope tok = ListComprehension(st, middle, in_clause) tok_list.append(tok) if list_comp: string = '' string += tok.get_code() continue else: n, token_type, tok = self._parsedotname(self.current) # removed last entry, because we add Name tok_list.pop() if n: tok_list.append(n) if tok == '(': # it must be a function used_funcs.append(n) else: used_vars.append(n) if string and re.match(r'[\w\d\'"]', string[-1]): string += ' ' string += ".".join(n.names) continue elif tok.endswith('=') and tok not in ['>=', '<=', '==', '!=']: # there has been an assignement -> change vars if level == 0: set_vars += used_vars used_vars = [] elif tok in opening_brackets: level += 1 elif tok in closing_brackets: level -= 1 string = set_string if set_string is not None else string + tok token_type, tok = self.next() except StopIteration: # comes from tokenizer break if not string: return None, tok #print 'new_stat', string, set_vars, used_funcs, used_vars if self.freshscope and not self.no_docstr and len(tok_list) == 1 \ and self.last_token[0] == tokenize.STRING: self.scope.add_docstr(self.last_token[1]) return None, tok else: stmt = stmt_class(string, set_vars, used_funcs, used_vars, tok_list, first_pos, self.end_pos) self._check_user_stmt(stmt) if is_return: # add returns to the scope func = self.scope.get_parent_until(Function) if is_return == 'yield': func.is_generator = True try: func.returns.append(stmt) except AttributeError: debug.warning('return in non-function') if tok in always_break: self.gen.push_back(self._current_full) return stmt, tok def next(self): return self.__next__() def __iter__(self): return self def __next__(self): """ Generate the next tokenize pattern. """ try: self._current_full = next(self.gen) except tokenize.TokenError: # We just ignore this error, I try to handle it earlier - as # good as possible debug.warning('parentheses not closed error') except IndentationError: # This is an error, that tokenize may produce, because the code # is not indented as it should. Here it just ignores this line # and restarts the parser. # (This is a rather unlikely error message, for normal code, # tokenize seems to be pretty tolerant) debug.warning('indentation error on line %s, ignoring it' % (self.start_pos[0])) self._line_of_tokenize_restart = self.start_pos[0] + 1 self.gen = PushBackIterator(tokenize.generate_tokens( self.buf.readline)) return self.next() except StopIteration: # set end_pos correctly, if we finish s = self.scope while s is not None: s.end_pos = self.end_pos s = s.parent raise type, tok, self._tokenize_start_pos, self._tokenize_end_pos, \ self.parserline = self._current_full if self.user_position and (self.start_pos[0] == self.user_position[0] or self.user_scope is None and self.start_pos[0] >= self.user_position[0]): debug.dbg('user scope found [%s] = %s' % \ (self.parserline.replace('\n', ''), repr(self.scope))) self.user_scope = self.scope self.last_token = self.current self.current = (type, tok) return self.current def parse(self): """ The main part of the program. It analyzes the given code-text and returns a tree-like scope. For a more detailed description, see the class description. :param text: The code which should be parsed. :param type: str :raises: IndentationError """ self.buf = StringIO(self.code) self.gen = PushBackIterator(tokenize.generate_tokens( self.buf.readline)) extended_flow = ['else', 'elif', 'except', 'finally'] statement_toks = ['{', '[', '(', '`'] decorators = [] self.freshscope = True self.iterator = iter(self) # This iterator stuff is not intentional. It grew historically. for token_type, tok in self.iterator: self.module.temp_used_names = [] #debug.dbg('main: tok=[%s] type=[%s] indent=[%s]'\ # % (tok, tokenize.tok_name[token_type], start_position[0])) while token_type == tokenize.DEDENT and self.scope != self.module: token_type, tok = self.next() if self.start_pos[1] <= self.scope.start_pos[1]: self.scope.end_pos = self.start_pos self.scope = self.scope.parent # check again for unindented stuff. this is true for syntax # errors. only check for names, because thats relevant here. If # some docstrings are not indented, I don't care. while self.start_pos[1] <= self.scope.start_pos[1] \ and (token_type == tokenize.NAME or tok in ['(', '['])\ and self.scope != self.module: self.scope.end_pos = self.start_pos self.scope = self.scope.parent first_pos = self.start_pos if tok == 'def': func = self._parsefunction() if func is None: debug.warning("function: syntax error@%s" % self.start_pos[0]) continue self.freshscope = True self.scope = self.scope.add_scope(func, decorators) decorators = [] elif tok == 'class': cls = self._parseclass() if cls is None: debug.warning("class: syntax error@%s" % self.start_pos[0]) continue self.freshscope = True self.scope = self.scope.add_scope(cls, decorators) decorators = [] # import stuff elif tok == 'import': imports = self._parseimportlist() for m, alias, defunct in imports: i = Import(first_pos, self.end_pos, m, alias, defunct=defunct) self._check_user_stmt(i) self.scope.add_import(i) if not imports: i = Import(first_pos, self.end_pos, None, defunct=True) self._check_user_stmt(i) self.freshscope = False elif tok == 'from': defunct = False # take care for relative imports relative_count = 0 while 1: token_type, tok = self.next() if tok != '.': break relative_count += 1 # the from import mod, token_type, tok = self._parsedotname(self.current) if str(mod) == 'import' and relative_count: self.gen.push_back(self._current_full) tok = 'import' mod = None if not mod and not relative_count or tok != "import": debug.warning("from: syntax error@%s" % self.start_pos[0]) defunct = True if tok != 'import': self.gen.push_back(self._current_full) names = self._parseimportlist() for name, alias, defunct2 in names: star = name is not None and name.names[0] == '*' if star: name = None i = Import(first_pos, self.end_pos, name, alias, mod, star, relative_count, defunct=defunct or defunct2) self._check_user_stmt(i) self.scope.add_import(i) self.freshscope = False #loops elif tok == 'for': set_stmt, tok = self._parse_statement(added_breaks=['in']) if tok == 'in': statement, tok = self._parse_statement() if tok == ':': s = [] if statement is None else [statement] f = ForFlow(s, first_pos, set_stmt) self.scope = self.scope.add_statement(f) else: debug.warning('syntax err, for flow started @%s', self.start_pos[0]) if statement is not None: statement.parent = self.scope if set_stmt is not None: set_stmt.parent = self.scope else: debug.warning('syntax err, for flow incomplete @%s', self.start_pos[0]) if set_stmt is not None: set_stmt.parent = self.scope elif tok in ['if', 'while', 'try', 'with'] + extended_flow: added_breaks = [] command = tok if command in ['except', 'with']: added_breaks.append(',') # multiple statements because of with inits = [] first = True while first or command == 'with' \ and tok not in [':', '\n']: statement, tok = \ self._parse_statement(added_breaks=added_breaks) if command == 'except' and tok in added_breaks: # the except statement defines a var # this is only true for python 2 n, token_type, tok = self._parsedotname() if n: statement.set_vars.append(n) statement.code += ',' + n.get_code() if statement: inits.append(statement) first = False if tok == ':': f = Flow(command, inits, first_pos) if command in extended_flow: # the last statement has to be another part of # the flow statement, because a dedent releases the # main scope, so just take the last statement. try: s = self.scope.statements[-1].set_next(f) except (AttributeError, IndexError): # If set_next doesn't exist, just add it. s = self.scope.add_statement(f) else: s = self.scope.add_statement(f) self.scope = s else: for i in inits: i.parent = self.scope debug.warning('syntax err, flow started @%s', self.start_pos[0]) # globals elif tok == 'global': stmt, tok = self._parse_statement(self.current) if stmt: self.scope.add_statement(stmt) for name in stmt.used_vars: # add the global to the top, because there it is # important. self.module.add_global(name) # decorator elif tok == '@': stmt, tok = self._parse_statement() decorators.append(stmt) elif tok == 'pass': continue elif tok == 'assert': stmt, tok = self._parse_statement() stmt.parent = self.scope self.scope.asserts.append(stmt) # default elif token_type in [tokenize.NAME, tokenize.STRING, tokenize.NUMBER] \ or tok in statement_toks: # this is the main part - a name can be a function or a # normal var, which can follow anything. but this is done # by the statement parser. stmt, tok = self._parse_statement(self.current) if stmt: self.scope.add_statement(stmt) self.freshscope = False else: if token_type not in [tokenize.COMMENT, tokenize.INDENT, tokenize.NEWLINE, tokenize.NL, tokenize.ENDMARKER]: debug.warning('token not classified', tok, token_type, self.start_pos[0]) del self.buf return self.module